
Journal of Computational Physics170,812–829 (2001)

doi:10.1006/jcph.2001.6764, available online at http://www.idealibrary.com on

Multiscale Lattice Boltzmann Schemes
with Turbulence Modeling

Olga Filippova,∗,1 Sauro Succi,† Francesco Mazzocco,‡ Cinzio Arrighetti,‡
Gino Bella,§ and Dieter H¨anel∗

∗Institute of Combustion and Gasdynamics, University of Duisburg, 47048 Duisburg, Germany;†Institute
of Computing Applications, Viale Policlinico 137, CNR Rome, Italy;‡Mechanics and Aeronautics

Department, University of Rome “La Sapienza,” Rome, Italy; and§Mechanical Engineering
Department, University of Rome “Tor Vergata,” Rome, Italy

E-mail: succi@iac.rm.cnr.it

Received June 6, 2000; revised January 3, 2001

The viability of multiscale lattice Boltzmann schemes for the numerical simulation
of turbulent flows is discussed and numerically demonstrated for turboaxial machine
applications. The extension of boundary-fitting formulas based on wall functions
is proposed, which enables the efficient computation of turbulent flows in complex
curvilinear geometry using a simple Cartesian grid. Examples of two-dimensional
turbulent flows in an axial compressor cascade are presented.c© 2001 Academic Press
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1. INTRODUCTION

Lattice kinetic theory, and most notably the lattice Boltzmann (LB) method [1, 2] has
received considerable interest in the past decade as an efficient method of computing a
variety of fluid flows, ranging from low-Reynolds-number flows in porous media to highly
turbulent flows [4, 7, 18, 24]. Until recently, LB applications to flows of engineering interest
have been held back by a certain lack of flexibility to accommodate nonuniform grids. To
circumvent this limitation, a number of variants have been proposed [8, 9], most of which
are based on a combination of LB with consolidated finite volume or finite difference tech-
niques. This merge has considerably extended the range of application of the LB method at
a fairly reasonable cost in terms of computational complexity. Nonetheless, these merges
can accommodate only relatively smooth variations of the flow field because large defor-
mations of the nonuniform mesh may result in numerical instabilities. Many phenomena of
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physical and engineering interest, however, exhibit violent excursions over highly localized
regions (boundary layers, shock fronts) which require a correspondingly highly clustered
mesh. A powerful response to this kind of need in modern computational fluid dynamics is
provided byunstructuredmeshes, namely discrete grids where the number of neighbors of
a given node may change from place to place. This allows much stronger distortions of the
computational grid, but only at the expense of a significantly more complex data structure.
Another popular possibility is provided bylocally embeddedgrids, namely, grids in which
the local connectivity (number of neighbors) is unchanged but the lattice spacing is refined
or coarsened locally, typically in steps of two for practical purposes. Local embedding is a
specific instance of a more general framework known asmultiscale algorithms.

Multiscale LBE schemes were proposed in [14], and subsequently tested and validated
for moderate Reynolds number flows around cylinders and blades [14–16].

In this paper we demonstrate the viability of the multiscale LBE scheme for turbulent
flows in complex curvilinear geometry, namely, two-dimensional flows in an axial com-
pressor cascade.

2. BASICS OF THE MULTISCALE LB METHOD

Our starting point is the lattice BGK formulation of fluid dynamics [3]:

fi (r + Ci δt, t + δt)− fi (r , t) = −ω
[

fi (r , t)− f eq
i (r , t)

]
. (1)

Since this equation has been described at length in many papers, only essential information
shall be provided below.

Here fi is a set of discrete populations representing the number density of particles at
position r at time t moving along the direction identified by the discrete speedCi . For
“isothermal” LBGK schemes [3] all moving molecules have the same Cartesian speed
componentC = δx/δt , whereδx is the lattice spacing of the grid.

The right-hand side of (1) represents the relaxation to a local equilibriumf eq
i in a time

lapseδtω−1. Here we will use the expression for equilibrium distribution function proposed
in [17] for simulation of incompressible flows with constant densityρ0 = 1. Once the
discrete populations are known, fluid pressure and speed are obtained by (weighted) sums
over the set of discrete speeds:

P = ρ0C2

3

∑
i

fi , U =
∑

i

fi Ci . (2)

The multiscale implementation of the LB method is based on the following steps. Grid
refinement is performed by dividing the lattice spacing by a refinement factorn. The kine-
matic viscosity, defined in the frame of the LBGK model, depends on the lattice spacing as
follows:

ν = δxC

6

(
2

ω
− 1

)
.

To achieve the same viscosity, hence the same Reynolds number on the coarse and fine
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grids, the relaxation parameter in LBGK scheme must be rescaled as

ω f = 2

1+ n
(

2
ωc
− 1
) , (3)

whereω f andωc are relaxation parameters on the fine and coarse grid respectively and
n is the parameter of refinement. The discrete distribution function can be split into an
equilibrium and nonequilibrium components:

fi = f eq
i + f neq

i . (4)

Using LBGK equation, the nonequilibrium component can be obtained as

f neq
i = −δt

ω
[∂t + Cia∂α] f eq

i + O(Kn2), (5)

which is second-order accurate in the Knudsen numberKn = δx/L, whereL is a typical
macroscopic scale of the flow on the grid with lattice spacingδx.

It is important to realize that this scale can change significantly from place to place in
the flow and the task of the multiscale procedure is precisely to adapt the grid resolution to
this change of scales.

Knudsen numbers, different for the grids with different lattice spacings, must be of the
same order in the whole computational domain.

In the low-frequency limitδt/T ∼ Kn2 (see details in [16]), the nonequilibrium compo-
nent of the distribution function simplifies to

f neq
i = −δt

ω
Cia∂α f eq

i + O(Kn2). (6)

Combining the above relation with continuity of the hydrodynamic variables and their
derivatives at the interface between the two grids delivers the relation between the coarse
and fine grid populations,

f ′i = F̃eq
i +

(
F̃ ′i − F̃eq

i

)
Ä−1, F ′i = f eq

i +
(

f ′i − f eq
i

)
Ä, (7)

where capital means coarse grid, prime means postcollision, tilde stands for interpolation
from the coarse grid, andÄ = n((1− ωc)ω f /(1− ω f )ωc). The relation (7) defines a map
between coarse and fine grids which clearly reduces to the identity in the limitn→ 1.

The final one-step algorithm reads as follows:

1. Move and Collide F
2. For all subcycles k= 0, 1, . . .,n− 1 do:

a. Interpolate F on the interface coarse-to-fine grid
b. Scale F to f via 7 on the interface coarse-to-fine grid
c. Move and Collide f

3. End do
4. Scale back f to F via 7 on the interface fine-to-coarse grid.

For steady-state flows this algorithm can be accelerated by use of only one subcycle in
step 2 [16].
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3. TURBULENCE MODELING

The main benefit of the grid-refined LBGK scheme is a better resolution in the regions of
high gradients where turbulence is produced. Nonetheless, grid refinement alone is not able
to reach high Reynolds numbers, namelyRe≥ 105. As a result, some form of turbulence
modeling is needed.

Two-equation models for turbulence, and among themk–ε models, remain the most
popular choice for the simulation of turbulent flows. Previously it was suggested [6] that
thek–ε equations be solved within an LB structure by creating two additional populations,
with components in the same directions as the particle distribution, for each of the turbulent
properties which are defined as kinetic moments of the corresponding populations. Another
approach using LB in conjunction with finite difference schemes for the solution ofk–ε
equations was proposed in [18] based on the algorithm developed in [19].

At the same time, similar kinds of combined LBGK–finite difference schemes have been
successfully developed for the problems of low-Mach-number combustion [12, 13]. In both
cases LB schemes are “responsible” for the solution of continuity and momentum equations,
whereas convective–diffusion equations with source terms in both systems of equations are
solved with finite difference schemes using different numerical methods.

Here this combined approach is extended to the multiscale framework. The two-equation
model for turbulent kinetic energyk and dissipationε reads

ρ0
∂k

∂t
+ ρ0Uα

∂k

∂xα
= ∂

∂xα

((
µ0

σk0
+ µT

σkT

)
∂k

∂xα

)
+ ταβSαβ − ρ0ε (8)

ρ0
∂ε

∂t
+ ρ0Uα

∂ε

∂xα
= ∂

∂xα

((
µ0

σε0
+ µT

σεT

)
∂ε

∂xα

)
+ Cε1

ε

k
ταβSαβ

−
(

Cε2+ fRNGCµ

θ3(1− θ/θ0)

1+ βθ3

)
ρ0
ε2

k
, µT = ρ0Cµ

k2

ε
, (9)

whereθ is a dimensionless shear rate,θ = |S|k/ε, |S| = (2SαβSαβ)1/2,

ταβ = 2µT Sαβ − 2

3
ρ0kδαβ

is the stress tensor, andSαβ is the strain-rate tensorSαβ = 1
2(
∂Uβ

∂xα
+ ∂Uα

∂xβ
). In the low-

frequency limit, the strain-rate tensor can be obtained with accuracyO(Kn2) as a second-
order moment of the nonequilibrium distribution function:

Sαβ = −1.5ω
∑

i

(
fi − f eq

i

)
CiαCiβ/C

2 · C

δx
.

The values of the closure coefficients for the standardk–ε andk–ε RNG models can be
found in [20, 21].

The system of equations (8) and (9) can be rewritten in dimensionless variables,

k̄ = k

C2
, ε̄ = εδx

C3
, x̄ = x

L
, t̄ = tC

L
,

M = U

C
, S̄αβ = −1.5ω

∑
i

(
fi − f eq

i

)
CiαCiβ/C

2.
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In the low-frequency limit one can obtain from the lattice BGK equation (Eq. (1)) the
following relationship between dimensionless strain rate tensors on the fine and coarse
grids, respectively:

S̄f
αβ = S̄c

αβ/n.

Upon considering the system of dimensionless equations fork̄ and ε̄ on the fine and
coarse grids, one obtains that the left-hand side of both dimensionless equations (after
multiplication of the equation for dissipation on the fine grid by the parameter of refinement
n) are not changed, whereas the source terms on the fine grid are reduced compared with
the source terms on the coarse grid, because of the following scaling relationships:

ε̄ f = ε̄c/n,

(
k̄2

ε̄
S̄αβ S̄αβ

) f

=
(

k̄2

ε̄
S̄αβ S̄αβ

)c/
n.

The equations for̄k and ε̄ are solved on the same grids as LBGK equations using a
standard explicit time marching of central difference scheme for all spatial derivatives of
variables̄k andε̄. The LBGK equations (Eq. (1)) and equations fork̄ andε̄ are considered to
be decoupled during a single time step. At the new time levelt the values of dimensionless
eddy viscosityµT (r , t)/(ρ0δxC) computed via the new values ofk̄(r , t) andε̄(r , t) are used
for the recalculation of the relaxation parameterω(r , t) in the LBGK scheme (Eq. (1)). The
lower thresholds for̄k and ε̄(k̄ = k̄inlet = 10−6–10−5, ε̄ = ε̄inlet = 7× 10−9) used in our
computations validating the code stabilize essentially this scheme.

3.1. LBGK Scheme in the Inviscid Flow Limit

In the low-frequency limit, the pressure and velocity fields obtained from the numerical
LBGK simulations as moments of distribution functions (Eq. (2)) satisfy the Navier–Stokes
equations for incompressible flows with second-order accuracy in the Knudsen number.

High-frequency components usually introduced in the LBGK scheme by initial conditions
dissipate rather quickly in the transitional stage of computations for moderate Reynolds
number flows if no high-frequency disturbances are generated or amplified by boundary
conditions. Once this dissipation takes place, the subsequent time evolution of the LBGK
scheme reproduces only the low-frequency, hydrodynamic solution . The problem in LBGK
simulations of high-Reynolds-number flows (and, in fact, ofanynumerical fluid solver) is
that the dissipation of high-frequency components becomes very small.

Below we analyze the question of whether it is possible to use an artificial value of
kinematic viscosity without impairing the accuracy of the solution for high-Reynolds-
number flows. The kinematic viscosityν in fluid dynamic simulations with the LBGK
scheme is related to the relaxation parameterω by the expression

ν = δxC

6

(
2

ω
− 1

)
.

Substituting it in the definition of Reynolds number, we obtain

Re= 6U0L0

δxC
(

2
ω
− 1
) ,
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from which we see that withRe→∞ the relaxation parameter in the LBGK equation
(Eq. (1)) tends to the value 2.

Expansion of LBGK equation in Taylor series with respect to small parameterδx = Cδt

(small related to characteristic length of the flow) for steady-state flows reads

δx
∂ fi
∂xα

ciα + δ
2
x

2

∂2 fi
∂xα∂xβ

ciαciβ + ω
(

fi − f eq
i

) = O(Kn3), ciα = Ciα

C
. (10)

The macroscopic momentum equation is obtained from the first part of Eq. (10) by
splitting the distribution functionfi into an equilibrium and a nonequilibrium part (Eqs. (4)
and (5)) and using the equation of continuity:

δx∂β

(
UαUβ + P

ρ0
δαβ

)
= δx∂βν∂βUα + O(Kn3). (11)

Using the equation of continuity and usual estimate of spatial derivatives,

δx
∂F

∂x
∼ δx

L
[F ]s = Kn[F ]s, δ2

x

∂2F

∂x2
∼ δ2

x

L2
[F ]s = Kn2[F ]s,

where [F ]s denotes the local deviation of variableF on the characteristic lengthL, one can
see that the orders of advective and viscous terms in the momentum equation are given,
respectively, by

U [U ]sKn,
[U ]sC Kn2

6

(
2

ω
− 1

)
, (12)

whereU is the value of local velocity.
According to the definition of Reynolds number, in the inviscid flow limit we haveω→ 2.

But from the estimations (12), we also observe thatω can be taken arbitrarily in the range
ω ∼ O( 2

1+6KnU/C ).
Then, the ratio between viscous and advective term in Eq. (11) becomesO(Kn2) and

Eq. (11) results in the Euler equation, with second-order accuracy in the Knudsen number.
To ensure a fixed accuracy of the orderKn2, the relaxation parameterω has to acquire

a dependence on the local Mach numberU/C (at least in the regions where local Mach
numbers are an order of magnitude smaller than the global Mach numberU0/C).

In our computations, this dependence was not taken into account. We have used a fixed
artificial value ofω such thatω ∼ 2− O(Kn). This can locally decrease the accuracy of
solution in the narrow vicinity of stagnation points. In the other regions of the flow with
U/C ∼ U0/C ∼ Kn ∼ 0.1 this relaxation parameter corresponding to the value of artificial
viscosityO( Kn

12 ) does not change the second-order accuracy of the solution.
We also emphasize that because the artificial relaxation parameterω does not represent

the real viscosity, it does not have to be rescaled according to Eq. (3) in the transition between
two grids with the different lattice spacings. For any grid it can be chosen arbitrarily in the
limits discussed above.

3.2. Boundary-Fitting Formulation for Wall Functions

Different ways of realizing wall function formulations were used recently in lattice
Botzmann schemes incorporating turbulence models [18, 23]. Here we are dealing with
the boundary-fitting formulation proposed in [10].
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The boundary-fitting formulation for no-slip conditions was derived as a weighted combi-
nation of bouncing-back and the “equilibrium state conditions” with adjusting parameters
depending on the location of the curvilinear boundary between the nodes of the basic
LBGK equidistant Cartesian grid. Completed with the additional term, first introduced in
the bouncing-back formula by Ladd [11], the boundary-fitting formulation is able to de-
scribe Dirichlet boundary conditions for velocity on arbitrary curvilinear boundaries in
the low-frequency limit. The theoretical estimation that the boundary-fitting formulation
does not decrease the second-order accuracy of the outer scheme if applied to an arbitrary
curvilinear boundary was given in [10, 14]. It was also numerically confirmed in [16] using
Richardson’s formula.

The extension of this formulation to the case of slip conditions and wall functions is
proposed. In the former case, the fluid speed at the crossing points of the boundary and
links of the grid are linearly extrapolated at every time step along the normal from the outer
flow. This makes it possible to simulate inviscid flows in complex geometry.

In the case of turbulent flow simulation, the fluid speed in the logarithmic part of turbulent
boundary layer reads

uτ
Us
= 1

κ
ln(y+)+ B, y+ = Usy

ν
, (13)

whereuτ is the mean velocity parallel to the wall,κ is the von Karman constant (κ = 0.41),
B is an empirical constant related to the thickness of the viscous sublayer (B = 5 in our
simulations),ν is the molecular viscosity,Us is the shear stress velocityU2

s = τw/ρ0, τw
is the shear stress at the wall, andy+ is the dimensionless distance from the boundary. For
the logarithmic region of turbulent boundary layer,y+ lies typically between 30 and 500
and, as one can see from Eq. (13), forRe→∞, y : (30< y+ < 500)→ 0. For this case,
a boundary-fitting formulation allowing description of the Dirichlet boundary condition for
velocity on a line (in 2D) or a surface (in 3D) not aligned with the numerical grid becomes
crucial.

The surfaceL lying inside the logarithmic region of the turbulent boundary layer on
which Eq. (13) is valid is sketched in Fig. 1. The distances to the surfaceL along the
crossing linksi from the neighbouring “fluid” nodes, components of normal vector to the
boundary of the bodyn in the crossing pointsr c, and distances from the crossing pointsr c

to the boundary of the bodyhc are computed at the onset once. At time leveltn the normal
to the vectorn velocity in the pointr c, uτ , is linearly extrapolated from the outer flow. The
shear stress velocityUn

s is found from Eq. (13) using Newton’s method. To avoid numerical
instability the relaxation to Eq. (13) is used in the computations.

Under the assumption that the flow is in local equilibrium (meaning that the production
and dissipation are nearly equal), the shear stress velocity reads

Us = C1/4
µ

√
k0.

The value ofkn
0 on the boundary of the body then is obtained as

kn
0 =

(
Un

s

)2/√
Cµ.
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FIG. 1. Computational mesh and geometrical relations for wall functions formulations.

The value ofkc in the pointr c is obtained as

kc =
(
kn(r D)− kn

0

) h2
c

(hc + Hc)2
+ kn

0

(parabolic fit with∂k/∂n = 0 on the boundary of the body). The value ofkn(r D) in the
point D: r D = r c + Hcn is interpolated with Bessel formula from the value ofkn in the
nodes of computational mesh.

The value ofεn
c reads

εn
c =

C3/4
µ k3/2

c

κhc
.

These values are used to evaluate spatial derivatives ofk andε at timetn in the neighboring
nodes to the surfaceL. Using the value of tangential velocity in the pointr c in the boundary-
fitting formula [10], as linearly interpolated from the valuesun

D and fictitious velocityun
fic

computed at the pointr c − ln, l = O(δx) according to the law of wall

un
fic = un

τ −Usl/(κhc), (14)

one can move to the next time leveltn+1. In the low-frequency limit the LBGK scheme
with turbulence modeling using these boundary conditions provides macroscopically the
solution of RANS Navier–Stokes equations smoothly connected on the surface L with the
logarithmic law of wall in the region between the surface L and the surface of the body.

Similarly, the boundary-fitting formulation can be applied in viscous and buffer sublayers.
The universal dependenceu+ = f (y+) in the turbulent boundary layer is important. It
enables us to compute derivatives of the tangential component of velocity along the normal
in the point r c and accordingly, the value of the fictitious velocityun

fic at any distance



820 FILIPPOVA ET AL.

l ∼ O(δx) along the normal toward the wall. The value of the velocity in the pointr c in the
boundary-fitting formulas is obtained using linear interpolation of the stream velocityun

D

and fictitious velocityun
fic.

We emphasize that general formulas such as Eq. (13) are strictly valid only for turbulent
flow over a flat plate. Their application to turbulent flows around arbitrary curvilinear
boundaries requires in some cases local refinement of the coarse grid such that the boundary
can be locally treated as a flat plate.

4. RESULTS

4.1. Validation of the Code

To validate the code and to estimate its computational performance, the flow around a
NACA 4412 profile with small angles of attack is considered. Two differentk–ε models,
thek–ε RNG and the standardk–ε, are used and compared with experiments based on the
data from [26].

The computational experiment is as follows: For the angleα = −0.5◦ the flow is in-
jected at the inlet and upper section of the computational domain with an LBGK Mach
number ofUin/C = 0.08. For the angleα = 2.9◦ the flow is injected at the inlet and lower
section of the computational domain at a LBGK Mach numberUin/C = 0.08. The other
kind of boundary condition used in the numerical simulations at the “injection” section of
the computational domain is the extrapolation ofxcomponent of the velocity from the outer
flow and the constant inclinationα of the stream. Pressure at inlet and “injection” sections
is extrapolated along the normal to the section from the outer flow. Pressure at outlet is
assumed to be constant. At outlet the velocity is extrapolated along the normal from the
outer flow; at the other “outlet” section thex component of velocity is also extrapolated
along the normal from the outer flow whereas the normal component of velocity is obtained
under the condition of constant inclinationα of the stream. Pressure at this section is defined
according to the Bernoulli equation.

Two values of the Reynolds numbers related to the length of the chord were considered,
Re= 106 andRe= 3× 106; in [26] the value of Reynolds number was not defined precisely
(approximately 3,000,000). The computational domain consists of 160× 111 nodes.

Grid refinement defined by the parametern = δc
x/δ

f
x is applied to a box (65δc

x, 17δc
x)

surrounding the profile with the left-down corner at (40 and 49). The convergence criterion is
prescribed as max|u(t, r)− u(t − 1, r)| + |v(t, r)− v(t − 1, r)| < 1× 10−6 in the nodes
of the coarse grid. The accelerated scheme using one time step on the fine grid versus one
time step on the coarse grid is used. The value ofωcoarsein the absence of turbulent viscosity
is 1.95 for the simulations with thek–ε RNG model and 1.92 for the simulations with the
standardk–ε model.

We emphasize that in the law-of-wall formulation (Eq. (13)) the molecular viscosity
ν = Re/(U0L0) must be used.

The relative positions of the surfaceL due to the displacement of wall layer with respect
to the surface of airfoil are shown in Fig. 2a for the particular caseRe= 106,α = 2.9◦. The
main results for thek–ε RNG model are collected in Figs. 2b and 2c and for the standard
k–ε model in Figs. 3a and 3b where the numerically and experimentally obtained pressure
coefficients along a chord of profile are shown for different angles of attack. Parameter
of refinement in the numerical simulations was taken asn = 5. In addition, the numerical
results forRe= 106 andn = 3 are shown in Fig. 2c with dotted lines.
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FIG. 2. (a) Relative positions of the surfaceL and the surface of the airfoil in the numerical simulation of the
turbulent flow around NACA 4412 profile atRe= 106,α = 2.9◦. (b) Pressure coefficientCP along the chord of the
NACA 4412 profile,α = −0.5◦. Solid circles represent present solution,k–ε RNG model, open circles represent
experimental results [25, 26]. (c) Pressure coefficientCP along the chord of the NACA 4412 profile,α = 2.9◦.
Solid circles represent present solution,k–ε RNG model, open circles represent experimental results [25, 26].

As one can see from Figs. 2b, 2c, 3a, and 3b that bothCP curves forRe= 106 and
Re= 3× 106 coincide closely. The change in the boundary conditions at the “injection”
section of the computational domain has shown virtually no influence on the pressure
distribution on the surface of the airfoil. The agreement between experimental and numerical
results is found to be good for both turbulence models.

An important remark is in order. In general, the law of wall can be applied on any surface
lying inside the logarithmic part of turbulent boundary layer. In high-Reynolds-number
flows, the thickness of the logarithmic part of turbulent boundary layer may become even
smaller than the lattice spacing of the fine grid, if the latter is defineda priori. Then, the
procedure described above loses the right resolution of the velocity field in the “rest” of
the logarithmic part of turbulent boundary layer, lying above the surfaceL. This may cause
deviations of the pressure field from the right values.

To avoid this effect one has to use finer resolution around the surfaceL or, what is
more effective and enables the use of coarser grids, to adapt the position of the surfaceL
to the positiony+ = y+,up (y+,up = 500 in our computations). The best agreement with
experimental data [26] in our computations is achieved wheny+ lies in the band (300,500)
for ∼97% of the chord of airfoil (except the narrow vicinity of the leading edge).

We emphasize that grid refinement together with boundary-fitting formulation for wall
functions proves instrumental to ensure good agreement between experimental results and
numerical results for turbulent flow simulation around blunt bodies at high Reynolds num-
bers. As one can see from Table I, the higher quality provided by grid refinement comes at
a reasonable cost in CPU and memory requirements. The computations were performed on
PC AMD-K7, 500 MHz.
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FIG. 3. (a) Pressure coefficientCP along the chord of the NACA 4412 profile,α = −0.5◦. Solid circles
represent present solution, standardk–ε model, open circles represent experimental results [25, 26]. (b) Pressure
coefficientCP along the chord of the NACA 4412 profile,α = 2.9◦. Solid circles represent present solution,
standardk–ε model, open circles represent experimental results [25, 26]. (c) Time history of the different errors
obtained in the numerical simulations of the flow around NACA 4412 profile,Re= 106, α = 2.9◦, Standardk–ε
model. Bold lines correspond to the caseωfine= 1.66, thin lines toωfine= 1.8 (hereωfine is the relaxation parameter
on the fine grid in the absence of turbulent viscosity). (1) max|u(r , t)− u(r , t − 1)| + |v(r , t)− v(r , t − 1)|; (2)
[
∑
((u(r , t)− u(r , t − 1))2 + (v(r , t)− v(r , t − 1))2)]

0.5
/Uin; (3) [

∑
(k(r , t)− k(r , t − 1))2]

0.5
/kin.

The temporal behavior of the errors, max|u(r , t)− u(r , t − 1)| + |v(r , t)− v(r , t)|,
[
∑
(u(r , t)− u(r , t − 1))2+ (v(r , t)− v(r , t − 1))2]0.5/Uin, and [

∑
(k(r , t)− k(r , t −

1))2]0.5/kin, is shown in Fig. 3c forRe= 106, α = 2.9o and two differentωfine corre-
sponding to the artificial viscosity on the fine grid:ωfine= 1.66 andωfine= 1.8. Peaks
on all curves correspond to the “switch-on” of the boundary-fitting conditions for wall
functions formulation which were not used at the initial (relaxation) stage of the com-
putations. Althoughk–ε equations were solved with the same time stepping as LBGK
equations, they are found to take only 18% of the CPU time. This is basically in line
with the fact that the turbulence model evolves two scalar fields while LBGK involves
nine.
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TABLE I

Turbulent Flow around NACA 4412 Profile at the Angle of Attack 2.9◦

Re Model n ωfine Memory requirement CPU time (s)

106 RNG 3 1.86 17.9 1195
106 RNG 5 1.77 31.1 2655

3× 106 RNG 5 1.77 31.1 2676
106 Standard 5 1.66 31.1 2208

3× 106 Standard 5 1.66 31.1 2262

Note. Reynolds number,k–ε turbulence model, spatial refinement factorn, relaxation
parameter on the fine grid in the absence of turbulent viscosityωfine, memory usage of
the optimized code Mbyte, CPU time in seconds.

In addition, the field of generalized pressure 3( p̄+ 2
3 k̄) with streamlines in the whole

computational domain is shown in Fig. 4 for the caseRe= 106, α = 2.9◦ and parameter
of refinement 5, using the standardk–ε model.

To demonstrate more clearly the loss of the right resolution in the turbulent boundary
layer due to the coarsening of the grids and increasing of the Reynolds number, we apply
our code to the following simple geometry modeling the flow over the flat plate. The
computational domain consists of(Nx, Ny) nodes. In our computationsNx = 11, Ny =
51, 151, 251. The periodicity in thex direction is imposed on the solution. At the upper
section of the computational domain the velocity is extrapolated with the zeroth order
from the computational domain, at the lower section boundary-fitting formulas for wall
functions withy+ = y0, 30≤ y0 ≤ 500 are applied. This corresponds to the flat plate lying
outside the computational domain parallel tox axis. The characteristic length and velocity
used in the definition of the Reynolds numberResim= 1000, 5000 correspond to the lattice

FIG. 4. Turbulent flow around NACA 4412 profile atRe= 106,α = 2.9◦ computed with standardk–εmodel,
parameter of refinement 5. Pressure and streamlines in the whole computational domain.
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FIG. 5. The part of the turbulent boundary layeru+(y+) in the flow over a flat plate resolved on the grids
with different densities at different Reynolds numbersResim. Solid squares represent the data obtained on the
grid with Ny = 51, y0 = 30, andResim= 5000. ForResim= 1000 andy0 = 30 open squares represent the data
obtained on the grid withNy = 51, open circles withNy = 151, and solid circles withNy = 251. Solid triangles
represent the data obtained on the grid withNy = 51, y0 = 100 atResim= 1000. In addition the line representing
the logarithmic law of wall is shown.

link of the coarsest lattice and initial value of the velocityU0 = 0.15C. The part of the
turbulent boundary layeru+(y+), y0 ≤ y+ ≤ 500 at y0 = 30, Resim= 1000 resolved on
the grids with different grid densities is shown in Fig. 5.

4.2. Flow Across a Periodic Array of Compressor Blades

In this section we present an application of multiscale lattice Boltzmann schemes to the
case of a two-dimensional flow across a periodic array of compressor blades [22]. The
surface of the blade in the periodic computational cell is described by

f (x) = a1(x −
√

x)+ a2(x
2−√x)+ a3(x

3−√x),

wherex is normalized according to the chord length.
The computational experiment is as follows: the flow is injected at the inlet section at a

speedUin and injection angleα = 16◦.
We use the blade profile with the following coefficients for the upper and lower contours

[22]:

a1up = 0.09054341, a2up = −0.3910232, a3up = 0.08876120,

a1low = 0.343766, a2low = −0.02828469, a3low = −0.1469358.
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FIG. 6. Relative positions of the surfaceL and the surface of the blade.

The computational domain consists of 350× 81 nodes. Grid refinement defined by
parametern = δc

x/δ
f
x is applied to a box surrounding the blade. The value ofn, the size of

the box in the links of the coarse gridδc
x, the left-down corner of the box, and the value of

velocity at inlet are denoted for any particular case.
We perform three types of simulations:

1. Direct simulation of viscous flow atRe= 104

(parameter of refinement 6, the size of the box 120×22, left-down corner (117,35),Uin/C =
0.07.)

2. Direct simulation of inviscid flow
(parameter of refinement 2, the size of the box 120× 27, left-down corner (117,30),ωc =
1.885, ω f = 1.782,Uin/C = 0.1).

3. Simulation of turbulent flow atRe= 105 (RANSk–ε RNG model)
(parameter of refinement 3, the size of the box 130×32, left-down corner (112,30),Uin/C =
0.08)

FIG. 7. Pressure coefficientCP along the chord of the blade for inviscid flow, laminar flow atRe= 104

(averaged per cycle) and turbulent flows atRe= 105, α = 16◦.



826 FILIPPOVA ET AL.

FIG. 8. Turbulent flow in cascade atRe= 105, α = 16◦. (a) Turbulent kinetic energy in the vicinity of the
blade; (b)x-velocity and streamlines; (c) Generalized pressure and streamlines.

The artificial value of molecular viscosity in turbulent flow simulation corresponds to
ωc = 1.92, ω f = 1.78. The relative positions of the surfaceL on which boundary-fitting
formulation for wall functions is applied and the surface of the blade are shown in Fig. 6.

The idea is to assess how close we can get to the inviscid results by raising the Reynolds
number. The main results are collected in Fig. 7, where the pressure coefficient along a chord
are shown for all three cases. From this figure we see that theCP curve obtained with LBGK
scheme using slip conditions in the boundary-fitting formula for inviscid flow simulation
is in very good agreement with the analytical solution [22]. The agreement between results
for inviscid and turbulent flow atRe= 105 is also good except the small region in the
vicinity of the leading edge. The same discrepancy in the vicinity of leading edge between
numerical results for potential flow and experimental data [26] for NACA 4412 profile with
small angle of attack was obtained in [25].
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Results of the developed turbulent flow atRe= 105 are shown in Fig. 8 for the turbulent
kinetic energy,x velocity, streamlines, and contours of the generalized pressurep̄+ 2

3 k̄.
However, as one can see from Fig. 7, direct simulation of flow atRe= 104 does not

provide a good match with the inviscid results. This is due to flow detachment and onset
of turbulent structures. In Fig. 9 one can see isolines of vorticity for four differents instants
in cycle which represent the wide recirculation zone with vortex shedding from the trailing
edge of the blade. The whole flow can be considered potential flow for this relatively
high-Reynolds-numberRe= 104 only outside this zone.

FIG. 9. Vortex shedding from the trailing edge of the blade atRe= 104, α = 16◦ at four different instants in
the cycle.
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CONCLUSIONS

The viability of multiscale LBE schemes for the numerical simulation of turbulent flows
in complex curvilinear geometry has been discussed. The main progress is connected with
the extension of boundary-fitting formulas on wall function formulations. Decoupling of the
numerical mesh and the surface lying inside the logarithmic part of turbulent boundary layer
on which boundary-fitting formulas are applied enables the efficient computation of turbu-
lent flows such as two-dimensional flows in an axial compressor cascade, without loosing
the simplicity of Cartesian grids. The multiscale LBGK code is clearly more complicated
than standard LBGK scheme, but still simpler than state-of-the-art computational fluid dy-
namic codes with unstructured and locally refined mesh capabilities. Although a detailed
head-on comparison on specific benchmark calculations remains to be done, preliminary
data indicate comparable performances on serial computers. The great amenability to par-
allel computing of LBGK schemes, which is to a large extent preserved in the multiscale
version, is expected to provide an asset for future LBGK applications to turbulent flows in
complex geometries.
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