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The viability of multiscale lattice Boltzmann schemes for the numerical simulation
of turbulent flows is discussed and numerically demonstrated for turboaxial machine
applications. The extension of boundary-fitting formulas based on wall functions
is proposed, which enables the efficient computation of turbulent flows in complex
curvilinear geometry using a simple Cartesian grid. Examples of two-dimensional
turbulent flows in an axial compressor cascade are presefited.academic Press

Key Wordsiattice-BGK model; grid refinement.

1. INTRODUCTION

Lattice kinetic theory, and most notably the lattice Boltzmann (LB) method [1, 2] he
received considerable interest in the past decade as an efficient method of computi
variety of fluid flows, ranging from low-Reynolds-number flows in porous media to highl
turbulent flows [4, 7, 18, 24]. Until recently, LB applications to flows of engineering intere:
have been held back by a certain lack of flexibility to accommodate nonuniform grids.
circumvent this limitation, a number of variants have been proposed [8, 9], most of whi
are based on a combination of LB with consolidated finite volume or finite difference tec
nigues. This merge has considerably extended the range of application of the LB methc
a fairly reasonable cost in terms of computational complexity. Nonetheless, these mel
can accommodate only relatively smooth variations of the flow field because large de
mations of the nonuniform mesh may result in numerical instabilities. Many phenomene
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physical and engineering interest, however, exhibit violent excursions over highly locali:
regions (boundary layers, shock fronts) which require a correspondingly highly cluste
mesh. A powerful response to this kind of need in modern computational fluid dynamic:
provided byunstructuredmeshes, namely discrete grids where the number of neighbors
a given node may change from place to place. This allows much stronger distortions of
computational grid, but only at the expense of a significantly more complex data structt
Another popular possibility is provided bgcally embeddedrids, namely, grids in which
the local connectivity (number of neighbors) is unchanged but the lattice spacing is refi
or coarsened locally, typically in steps of two for practical purposes. Local embedding i
specific instance of a more general framework knowmakliscale algorithms

Multiscale LBE schemes were proposed in [14], and subsequently tested and valid
for moderate Reynolds number flows around cylinders and blades [14-16].

In this paper we demonstrate the viability of the multiscale LBE scheme for turbule
flows in complex curvilinear geometry, namely, two-dimensional flows in an axial con
pressor cascade.

2. BASICS OF THE MULTISCALE LB METHOD

Our starting point is the lattice BGK formulation of fluid dynamics [3]:
fi(r + Cist, t +8t) — fi(r,t) = —o[fi(r,t) — %%, v)]. (1)

Since this equation has been described at length in many papers, only essential inform
shall be provided below.

Here f; is a set of discrete populations representing the number density of particle:
positionr at timet moving along the direction identified by the discrete sp€gdFor
“isothermal” LBGK schemes [3] all moving molecules have the same Cartesian spe
component = §, /8, wheresy is the lattice spacing of the grid.

The right-hand side of (1) represents the relaxation to a local equilibfittmn a time
lapsestw—?. Here we will use the expression for equilibrium distribution function propose
in [17] for simulation of incompressible flows with constant dengigy= 1. Once the
discrete populations are known, fluid pressure and speed are obtained by (weighted)
over the set of discrete speeds:

poc Zf., u=3fc. )

The multiscale implementation of the LB method is based on the following steps. G
refinement is performed by dividing the lattice spacing by a refinement factdre kine-
matic viscosity, defined in the frame of the LBGK model, depends on the lattice spacing

follows:
Sy
. ]
6 \w

To achieve the same viscosity, hence the same Reynolds number on the coarse an
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grids, the relaxation parameter in LBGK scheme must be rescaled as

2

" ren(z D) ?

wf

wherew; andw, are relaxation parameters on the fine and coarse grid respectively ¢
n is the parameter of refinement. The discrete distribution function can be split into
equilibrium and nonequilibrium components:

Using LBGK equation, the nonequilibrium component can be obtained as
8
fed = _;t[at + Ciady] £ 4 O(Kn?), (5)

which is second-order accurate in the Knudsen nuribe= 8, /L, wherelL is a typical
macroscopic scale of the flow on the grid with lattice spading

It is important to realize that this scale can change significantly from place to place
the flow and the task of the multiscale procedure is precisely to adapt the grid resolutiol
this change of scales.

Knudsen numbers, different for the grids with different lattice spacings, must be of t
same order in the whole computational domain.

In the low-frequency limi6,/ T ~ Kn? (see details in [16]), the nonequilibrium compo-
nent of the distribution function simplifies to

5
£1ed = _;tciaaa £9+ O(Kn?). (6)

Combining the above relation with continuity of the hydrodynamic variables and the
derivatives at the interface between the two grids delivers the relation between the co
and fine grid populations,

/= Ff (B = F@h R = (1 - %92, @

where capital means coarse grid, prime means postcollision, tilde stands for interpola
from the coarse grid, an@ = n((1 — wc)w: /(1 — wt)we). The relation (7) defines a map
between coarse and fine grids which clearly reduces to the identity in thenlimitl.

The final one-step algorithm reads as follows:

1. Move and Collide F

2. For all subcycles k=0, 1, ...,n—1do:
a. Interpolate F on the interface coarse-to-fine grid
b. Scale F to f via 7 on the interface coarse-to-fine grid
c. Move and Collide f

3. End do

4. Scale back f to F via 7 on the interface fine-to-coarse grid

For steady-state flows this algorithm can be accelerated by use of only one subcycl
step 2 [16].
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3. TURBULENCE MODELING

The main benefit of the grid-refined LBGK scheme is a better resolution in the regions
high gradients where turbulence is produced. Nonetheless, grid refinement alone is not
to reach high Reynolds numbers, namBlg> 10°. As a result, some form of turbulence
modeling is needed.

Two-equation models for turbulence, and among themm models, remain the most
popular choice for the simulation of turbulent flows. Previously it was suggested [6] tt
thek— equations be solved within an LB structure by creating two additional populatior
with components in the same directions as the particle distribution, for each of the turbu
properties which are defined as kinetic moments of the corresponding populations. Ano
approach using LB in conjunction with finite difference schemes for the solutidrof
equations was proposed in [18] based on the algorithm developed in [19].

At the same time, similar kinds of combined LBGK—finite difference schemes have be
successfully developed for the problems of low-Mach-number combustion [12, 13]. In b
cases LB schemes are “responsible” for the solution of continuity and momentum equati
whereas convective—diffusion equations with source terms in both systems of equation:
solved with finite difference schemes using different numerical methods.

Here this combined approach is extended to the multiscale framework. The two-equa
model for turbulent kinetic energyand dissipatior reads

ak ak 9 %o ok
— Uy—=—|—+— ” - 8
POt 0 ek, axa(<crm+on>axa)+”$"’ poc (©)
de de d o de
v Uoz = S - Ce Q,
POt T ek, axa(<050+m>axa>+ Sy
63%(1—0/60)\ €2 k2
-(cC fangCu——————2) po—, = 0oC,—, (9
<ez+ RNGLL 1+ B3 ),Ook nT ,0016 9

whered is a dimensionless shear rale= |S|k/¢, |S| = (2S,5S5)Y2,

2
Tap = 20T Sup — él)ok&xﬁ

3U)

is the stress tensor, arfig is the strain-rate tensd®,s = 2( In the low-
frequency limit, the strain-rate tensor can be obtained with acc@&l’synz) as a second-
order moment of the nonequilibrium distribution function:

C
Sy = —1.5602 (fi — fieq)CiaCiﬁ/Cz . 5

The values of the closure coefficients for the standkatdandk— RNG models can be
found in [20, 21].
The system of equations (8) and (9) can be rewritten in dimensionless variables,

E k - G(SX X — X t_— tC
cz “Tcy TTL T
U —
M=¢2. Sp=-1 SwZ (fi — 79 Ci,Cig/C
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In the low-frequency limit one can obtain from the lattice BGK equation (Eg. (1)) th
following relationship between dimensionless strain rate tensors on the fine and co:
grids, respectively:

— —
S = S‘;;ﬁ /n.

Upon considering the system of dimensionless equationEfmd € on the fine and
coarse grids, one obtains that the left-hand side of both dimensionless equations (:
multiplication of the equation for dissipation on the fine grid by the parameter of refineme
n) are not changed, whereas the source terms on the fine grid are reduced compared
the source terms on the coarse grid, because of the following scaling relationships:

2=\ /ie= - \°
el =€/, (E_ swsm) = <E—Sxﬁ5xﬂ> /n-

The equations fok and¢ are solved on the same grids as LBGK equations using
standard explicit time marching of central difference scheme for all spatial derivatives
variablesk ande. The LBGK equations (Eq. (1)) and equationsﬁande_are considered to
be decoupled during a single time step. At the new time letred values of dimensionless
eddy viscosityu (r, t)/(00dxC) computed via the new valueslafr, t) ande(r, t) are used
for the recalculation of the relaxation parametér, t) in the LBGK scheme (Eq. (1)). The
lower thresholds fok and €(k = Kyt = 106-1075, € = e = 7 x 107°) used in our
computations validating the code stabilize essentially this scheme.

3.1. LBGK Scheme in the Inviscid Flow Limit

In the low-frequency limit, the pressure and velocity fields obtained from the numeric
LBGK simulations as moments of distribution functions (Eqg. (2)) satisfy the Navier—Stok
equations for incompressible flows with second-order accuracy in the Knudsen numbe

High-frequency components usually introduced in the LBGK scheme by initial conditiol
dissipate rather quickly in the transitional stage of computations for moderate Reync
number flows if no high-frequency disturbances are generated or amplified by bounc
conditions. Once this dissipation takes place, the subsequent time evolution of the LB
scheme reproduces only the low-frequency, hydrodynamic solution . The problem in LB(
simulations of high-Reynolds-number flows (and, in factaey numerical fluid solver) is
that the dissipation of high-frequency components becomes very small.

Below we analyze the question of whether it is possible to use an artificial value
kinematic viscosity without impairing the accuracy of the solution for high-Reynold:
number flows. The kinematic viscosityin fluid dynamic simulations with the LBGK
scheme is related to the relaxation parametby the expression

6xC [ 2
= Z_1).
T (w )

Substituting it in the definition of Reynolds number, we obtain

6UoLo

Re= — >,
“Tac(Z-1)
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from which we see that witlRe— oo the relaxation parameter in the LBGK equation
(Eq. (1)) tends to the value 2.

Expansion of LBGK equation in Taylor series with respect to small pararfieterCé,
(small related to characteristic length of the flow) for steady-state flows reads

ofi 82 9%,

Sy, x N
X%, et 5 3% OXg

Ci
CaGip +o(fi — 159 = O(KN®), o= ?' (10)

The macroscopic momentum equation is obtained from the first part of Eq. (10)
splitting the distribution functiorf; into an equilibrium and a nonequilibrium part (Egs. (4)
and (5)) and using the equation of continuity:

P
8xdp <uauﬁ + 5aﬂ) = 8x95v85U, + O(KN3). (11)
L0

Using the equation of continuity and usual estimate of spatial derivatives,

oF 8
“ox L
where [F]° denotes the local deviation of varialiteon the characteristic length one can

see that the orders of advective and viscous terms in the momentum equation are g
respectively, by

6282F 82

; [FI° = Kn[FI, 8227 ~ DSIFF = K[,

. [U]SCKn? /2
U[U]SKn, 6<w—1), (12)

whereU is the value of local velocity.

According to the definition of Reynolds number, in the inviscid flow limit we have- 2.
But from the estimations (12), we also observe thatn be taken arbitrarily in the range
® ~ Orsgaure)-

Then, the ratio between viscous and advective term in Eq. (11) becorts?) and
Eqg. (11) results in the Euler equation, with second-order accuracy in the Knudsen num
To ensure a fixed accuracy of the ordén?, the relaxation parameter has to acquire
a dependence on the local Mach numbgiC (at least in the regions where local Mach

numbers are an order of magnitude smaller than the global Mach nugpey).

In our computations, this dependence was not taken into account. We have used a1
artificial value ofw such thaiw ~ 2 — O(Kn). This can locally decrease the accuracy of
solution in the narrow vicinity of stagnation points. In the other regions of the flow wit
U/C ~ Up/C ~ Kn ~ 0.1thisrelaxation parameter corresponding to the value of artifici
viscosityO(%) does not change the second-order accuracy of the solution.

We also emphasize that because the artificial relaxation parameisgs not represent
the real viscosity, it does not have to be rescaled according to Eq. (3) in the transition betw
two grids with the different lattice spacings. For any grid it can be chosen arbitrarily in tl
limits discussed above.

3.2. Boundary-Fitting Formulation for Wall Functions

Different ways of realizing wall function formulations were used recently in lattic
Botzmann schemes incorporating turbulence models [18, 23]. Here we are dealing \
the boundary-fitting formulation proposed in [10].
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The boundary-fitting formulation for no-slip conditions was derived as a weighted comlt
nation of bouncing-back and the “equilibrium state conditions” with adjusting paramete
depending on the location of the curvilinear boundary between the nodes of the bz
LBGK equidistant Cartesian grid. Completed with the additional term, first introduced
the bouncing-back formula by Ladd [11], the boundary-fitting formulation is able to d
scribe Dirichlet boundary conditions for velocity on arbitrary curvilinear boundaries i
the low-frequency limit. The theoretical estimation that the boundary-fitting formulatic
does not decrease the second-order accuracy of the outer scheme if applied to an arb
curvilinear boundary was given in [10, 14]. It was also numerically confirmed in [16] usir
Richardson’s formula.

The extension of this formulation to the case of slip conditions and wall functions
proposed. In the former case, the fluid speed at the crossing points of the boundary
links of the grid are linearly extrapolated at every time step along the normal from the ou
flow. This makes it possible to simulate inviscid flows in complex geometry.

Inthe case of turbulent flow simulation, the fluid speed in the logarithmic part of turbule
boundary layer reads

U1 In(y*)+ B, y*= M, (13)
Us « v

whereu, is the mean velocity parallel to the watljs the von Karman constant & 0.41),

B is an empirical constant related to the thickness of the viscous sublByery in our
simulations),v is the molecular viscosityJs is the shear stress velocitys2 = Tu/00, Tw

is the shear stress at the wall, aytdis the dimensionless distance from the boundary. Fo
the logarithmic region of turbulent boundary layet, lies typically between 30 and 500
and, as one can see from Eq. (13), Re— oo,y : (30 < y* < 500) — 0. For this case,

a boundary-fitting formulation allowing description of the Dirichlet boundary condition fo
velocity on a line (in 2D) or a surface (in 3D) not aligned with the numerical grid becom
crucial.

The surfacel lying inside the logarithmic region of the turbulent boundary layer or
which Eq. (13) is valid is sketched in Fig. 1. The distances to the sutfaang the
crossing links from the neighbouring “fluid” nodes, components of normal vector to th
boundary of the bodw in the crossing points.;, and distances from the crossing poings
to the boundary of the body. are computed at the onset once. At time léle¢he normal
to the vecton velocity in the pointr, u., is linearly extrapolated from the outer flow. The
shear stress velocity{ is found from Eqg. (13) using Newton’s method. To avoid numerica
instability the relaxation to Eq. (13) is used in the computations.

Under the assumption that the flow is in local equilibrium (meaning that the producti
and dissipation are nearly equal), the shear stress velocity reads

US = Cl];/A\/EO.

The value okg on the boundary of the body then is obtained as
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boundary of the body

FIG. 1. Computational mesh and geometrical relations for wall functions formulations.

The value ok in the pointr. is obtained as

h2
— kn r ey e + n
e = (100) ~H0) G 3 e 119
(parabolic fit withdk/an = 0 on the boundary of the body). The valuekdir D) in the
point D: rp = re + Hcn is interpolated with Bessel formula from the valuekdfin the
nodes of computational mesh.
The value ok{ reads

n
Cc

3/41,3/2
ZCM/kC/

€
«he

These values are used to evaluate spatial derivativearude at timet" in the neighboring
nodes to the surfade. Using the value of tangential velocity in the paigin the boundary-
fitting formula [10], as linearly interpolated from the valug} and fictitious velocityug,
computed at the point, — In, | = O(8x) according to the law of wall

Ufie = u7 — U®l/(kho), (14)

one can move to the next time levé@lL. In the low-frequency limit the LBGK scheme
with turbulence modeling using these boundary conditions provides macroscopically
solution of RANS Navier—Stokes equations smoothly connected on the surface L with
logarithmic law of wall in the region between the surface L and the surface of the body.

Similarly, the boundary-fitting formulation can be applied in viscous and buffer sublaye
The universal dependeneg = f (y™) in the turbulent boundary layer is important. It
enables us to compute derivatives of the tangential component of velocity along the nor
in the pointr and accordingly, the value of the fictitious velocitf}. at any distance
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| ~ O(8x) along the normal toward the wall. The value of the velocity in the priirt the
boundary-fitting formulas is obtained using linear interpolation of the stream veldgity
and fictitious velocityug,..

We emphasize that general formulas such as Eq. (13) are strictly valid only for turbul
flow over a flat plate. Their application to turbulent flows around arbitrary curvilinee
boundaries requires in some cases local refinement of the coarse grid such that the boul
can be locally treated as a flat plate.

4. RESULTS

4.1. Validation of the Code

To validate the code and to estimate its computational performance, the flow aroun
NACA 4412 profile with small angles of attack is considered. Two diffekeat models,
thek— RNG and the standaild—«, are used and compared with experiments based on
data from [26].

The computational experiment is as follows: For the anrgte —0.5° the flow is in-
jected at the inlet and upper section of the computational domain with an LBGK Ma
number ofU;,/C = 0.08. For the angle = 2.9° the flow is injected at the inlet and lower
section of the computational domain at a LBGK Mach numbgfC = 0.08. The other
kind of boundary condition used in the numerical simulations at the “injection” section
the computational domain is the extrapolatiox obmponent of the velocity from the outer
flow and the constant inclinatian of the stream. Pressure at inlet and “injection” section:
is extrapolated along the normal to the section from the outer flow. Pressure at outle
assumed to be constant. At outlet the velocity is extrapolated along the normal from
outer flow; at the other “outlet” section thecomponent of velocity is also extrapolated
along the normal from the outer flow whereas the normal component of velocity is obtair
under the condition of constant inclinatiarof the stream. Pressure at this section is definel
according to the Bernoulli equation.

Two values of the Reynolds numbers related to the length of the chord were conside
Re= 10°andRe= 3 x 1(f;in[26]the value of Reynolds number was not defined precisel
(approximately 3,000,000). The computational domain consists o&1860D1 nodes.

Grid refinement defined by the parametes §$/5, is applied to a box (68, 175S)
surrounding the profile with the left-down corner at (40 and 49). The convergence criteriol
prescribed as ma(t, r) — ut — 1, r)| + [v(t,r) —v(t — 1,r)| < 1 x 10°% in the nodes
of the coarse grid. The accelerated scheme using one time step on the fine grid versus
time step on the coarse grid is used. The value.gf; scin the absence of turbulent viscosity
is 1.95 for the simulations with the-« RNG model and 1.92 for the simulations with the
standardk— model.

We emphasize that in the law-of-wall formulation (Eq. (13)) the molecular viscosit
v = Re/(UgLg) must be used.

The relative positions of the surfatedue to the displacement of wall layer with respect
to the surface of airfoil are shown in Fig. 2a for the particular daee= 1, « = 2.9°. The
main results for th&— RNG model are collected in Figs. 2b and 2¢ and for the standal
k—e model in Figs. 3a and 3b where the numerically and experimentally obtained press
coefficients along a chord of profile are shown for different angles of attack. Parame
of refinement in the numerical simulations was taken as5. In addition, the numerical
results forRe= 10° andn = 3 are shown in Fig. 2c with dotted lines.
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FIG. 2. (a) Relative positions of the surfateand the surface of the airfoil in the numerical simulation of the
turbulent flow around NACA 4412 profile &= 1%, « = 2.9°. (b) Pressure coefficie@@y along the chord of the
NACA 4412 profile,a = —0.5°. Solid circles represent present solutikre RNG model, open circles represent
experimental results [25, 26]. (c) Pressure coefficléptalong the chord of the NACA 4412 profile,= 2.9°.
Solid circles represent present solutighe RNG model, open circles represent experimental results [25, 26].

As one can see from Figs. 2b, 2¢, 3a, and 3b that kqttcurves forRe= 1P and
Re= 3 x 1P coincide closely. The change in the boundary conditions at the “injectior
section of the computational domain has shown virtually no influence on the press
distribution on the surface of the airfoil. The agreement between experimental and nume
results is found to be good for both turbulence models.

Animportant remark is in order. In general, the law of wall can be applied on any surfe
lying inside the logarithmic part of turbulent boundary layer. In high-Reynolds-numb
flows, the thickness of the logarithmic part of turbulent boundary layer may become e
smaller than the lattice spacing of the fine grid, if the latter is defaedori. Then, the
procedure described above loses the right resolution of the velocity field in the “rest”
the logarithmic part of turbulent boundary layer, lying above the suifadéis may cause
deviations of the pressure field from the right values.

To avoid this effect one has to use finer resolution around the sutfame what is
more effective and enables the use of coarser grids, to adapt the position of the kurfa
to the positiony™ = y™UP (y™UP = 500 in our computations). The best agreement witl
experimental data [26] in our computations is achieved whneles in the band (300,500)
for ~97% of the chord of airfoil (except the narrow vicinity of the leading edge).

We emphasize that grid refinement together with boundary-fitting formulation for we
functions proves instrumental to ensure good agreement between experimental result:
numerical results for turbulent flow simulation around blunt bodies at high Reynolds nu
bers. As one can see from Table I, the higher quality provided by grid refinement come
a reasonable cost in CPU and memory requirements. The computations were performe
PC AMD-K7, 500 MHz.
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FIG. 3. (a) Pressure coefficiert, along the chord of the NACA 4412 profile,= —0.5°. Solid circles
represent present solution, standierd model, open circles represent experimental results [25, 26]. (b) Pressu
coefficientCp along the chord of the NACA 4412 profile, = 2.9°. Solid circles represent present solution,
standardk— model, open circles represent experimental results [25, 26]. (c) Time history of the different errc
obtained in the numerical simulations of the flow around NACA 4412 prdile= 10, o = 2.9°, Standardk—e
model. Bold lines correspond to the cagge = 1.66, thin lines tavfine = 1.8 (herawsine is the relaxation parameter
on the fine grid in the absence of turbulent viscosity). (1) méxt) — u(r,t — 1)| + |v(r,t) — v(r,t — 1)|; (2)
[, B = u(r, t = D)2+ (r, 1) — v(r, t — )21 /Uin; (3) [D(K(r, ) — K(r, t — 1)2°/kin.

The temporal behavior of the errors, nag,t) —u(r,t — 1)| + |v(r, t) — v(r, t)|,
Do, t) —u(r, t —1)% + (u(r, t) — v, t — 1)?]%5/U;n, and Do(k(r,t) —k(r,t —
1))?1°5%/kin, is shown in Fig. 3c forRe= 1P, o = 2.9° and two differentwsne corre-
sponding to the artificial viscosity on the fine griéine = 1.66 andwsine = 1.8. Peaks
on all curves correspond to the “switch-on” of the boundary-fitting conditions for wa
functions formulation which were not used at the initial (relaxation) stage of the cor
putations. Althoughk— equations were solved with the same time stepping as LBG
equations, they are found to take only 18% of the CPU time. This is basically in lir
with the fact that the turbulence model evolves two scalar fields while LBGK involve
nine.
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TABLE |
Turbulent Flow around NACA 4412 Profile at the Angle of Attack 2.9°

Re Model n Wfine Memory requirement CPU time (s)
10 RNG 3 1.86 17.9 1195
10 RNG 5 1.77 311 2655
3x 10° RNG 5 1.77 31.1 2676
10 Standard 5 1.66 31.1 2208
3 x 10 Standard 5 1.66 31.1 2262

Note Reynolds numbek— turbulence model, spatial refinement faatprelaxation
parameter on the fine grid in the absence of turbulent viscagjty, memory usage of
the optimized code Mbyte, CPU time in seconds.

In addition, the field of generalized pressur@3- %E) with streamlines in the whole
computational domain is shown in Fig. 4 for the c&e= 10°, « = 2.9° and parameter
of refinement 5, using the standdeek model.

To demonstrate more clearly the loss of the right resolution in the turbulent bound:
layer due to the coarsening of the grids and increasing of the Reynolds number, we a
our code to the following simple geometry modeling the flow over the flat plate. Tt
computational domain consists Ofly, Ny) nodes. In our computations, = 11, Ny =
51, 151 251. The periodicity in the direction is imposed on the solution. At the upper
section of the computational domain the velocity is extrapolated with the zeroth or
from the computational domain, at the lower section boundary-fitting formulas for ws
functions withy™ = yg, 30 < yp < 500 are applied. This corresponds to the flat plate lying
outside the computational domain parallektaxis. The characteristic length and velocity
used in the definition of the Reynolds numlitg;,, = 1000, 5000 correspond to the lattice

2.990E+00 2.992E+00 2994E+00 2.996E+00 2998E+00 3.000E+00 3.002E+00 3.004E+00 3.006E+00 3.007E+00

50 ' 100 150

FIG.4. Turbulentflow around NACA 4412 profile &e= 10°, « = 2.9° computed with standatd-< model,
parameter of refinement 5. Pressure and streamlines in the whole computational domain.
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FIG. 5. The part of the turbulent boundary layet (y*) in the flow over a flat plate resolved on the grids
with different densities at different Reynolds numb&s;i,. Solid squares represent the data obtained on the
grid with Ny, = 51, yo = 30, andR&;im = 5000. ForRea;im = 1000 andy, = 30 open squares represent the data
obtained on the grid witiN, = 51, open circles witlN, = 151, and solid circles witiN, = 251. Solid triangles
represent the data obtained on the grid ith= 51, y, = 100 atResjm = 1000. In addition the line representing
the logarithmic law of wall is shown.

link of the coarsest lattice and initial value of the velodity = 0.15C. The part of the
turbulent boundary layeun™(y*), yo < y* < 500 atyp = 30, Rejm = 1000 resolved on
the grids with different grid densities is shown in Fig. 5.

4.2. Flow Across a Periodic Array of Compressor Blades

In this section we present an application of multiscale lattice Boltzmann schemes to
case of a two-dimensional flow across a periodic array of compressor blades [22].
surface of the blade in the periodic computational cell is described by

FO0 = a1(x = v/%) + 8" — V%) + 85 — V),

wherex is normalized according to the chord length.

The computational experiment is as follows: the flow is injected at the inlet section a
speedJ;, and injection angle: = 16°.

We use the blade profile with the following coefficients for the upper and lower contou
[22]:

ay, = 0.09054341 ay, = —0.3910232 a3, = 0.08876120
aow = 0.343766  agey = —0.02828469 ag., = —0.1469358



MULTISCALE LATTICE BOLTZMANN SCHEMES 825

L
~—Surface of the blacb\
=

FIG. 6. Relative positions of the surfadeand the surface of the blade.

The computational domain consists of 35081 nodes. Grid refinement defined by
parameten = §¢/4/ is applied to a box surrounding the blade. The value,dhe size of
the box in the links of the coarse grdg, the left-down corner of the box, and the value of
velocity at inlet are denoted for any particular case.

We perform three types of simulations:

1. Direct simulation of viscous flow ®e= 10*
(parameter of refinement 6, the size of the box 22, left-down corner (117,38),,/C =
0.07.)

2. Direct simulation of inviscid flow
(parameter of refinement 2, the size of the box ¥2P7, left-down corner (117,30). =
1.885 ws = 1.782,U;,/C = 0.1).

3. Simulation of turbulent flow aRe= 10° (RANS k— RNG model)
(parameter of refinement 3, the size of the box &&?, left-down corner (112,3Q),,/C =
0.08)

L o 2DNS,Re=10"
12} . inviscid flow
14 @) analytical solution

° RANS k-e Re=10°, n=3

| | | | I | | | | I | | | | I | | | |
0 0.25000 0.50000 0.75000 1
x/c

FIG. 7. Pressure coefficier€y along the chord of the blade for inviscid flow, laminar flowRe= 10*
(averaged per cycle) and turbulent flowsRe= 10°, o = 16°.
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l

0.000E+00  1111E-02 2.222E-02 3.333E-02 4.444E-02 5.5_5éE-02 6.667E-02 7.778E-02 8889E-02 1.000E-01

FIG. 8. Turbulent flow in cascade &e= 1(°, « = 16°. (a) Turbulent kinetic energy in the vicinity of the
blade; (b)x-velocity and streamlines; (c) Generalized pressure and streamlines.

The artificial value of molecular viscosity in turbulent flow simulation corresponds t
we = 1.92, ws = 1.78. The relative positions of the surfateon which boundary-fitting
formulation for wall functions is applied and the surface of the blade are shown in Fig.

The idea is to assess how close we can get to the inviscid results by raising the Reyn
number. The main results are collected in Fig. 7, where the pressure coefficientalong a cl
are shown for all three cases. From this figure we see th@gleeirve obtained with LBGK
scheme using slip conditions in the boundary-fitting formula for inviscid flow simulatio
is in very good agreement with the analytical solution [22]. The agreement between res
for inviscid and turbulent flow aRe= 10° is also good except the small region in the
vicinity of the leading edge. The same discrepancy in the vicinity of leading edge betwe
numerical results for potential flow and experimental data [26] for NACA 4412 profile wit
small angle of attack was obtained in [25].
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Results of the developed turbulent flowRé = 10° are shown in Fig. 8 for the turbulent
kinetic energyx velocity, streamlines, and contours of the generalized prefsuﬂélz

However, as one can see from Fig. 7, direct simulation of flolRat= 10* does not
provide a good match with the inviscid results. This is due to flow detachment and or
of turbulent structures. In Fig. 9 one can see isolines of vorticity for four differents instat
in cycle which represent the wide recirculation zone with vortex shedding from the traili
edge of the blade. The whole flow can be considered potential flow for this relative
high-Reynolds-numbeRe = 10* only outside this zone.

LAMINAR INCOMPRESSIBLE FLOW, Re=10000

L . L L
ET] B8 =)

FIG. 9. Vortex shedding from the trailing edge of the blad&R&t= 10*, o = 16" at four different instants in
the cycle.
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CONCLUSIONS

The viability of multiscale LBE schemes for the numerical simulation of turbulent flow
in complex curvilinear geometry has been discussed. The main progress is connected
the extension of boundary-fitting formulas on wall function formulations. Decoupling of tf
numerical mesh and the surface lying inside the logarithmic part of turbulent boundary la
on which boundary-fitting formulas are applied enables the efficient computation of turt
lent flows such as two-dimensional flows in an axial compressor cascade, without l00s
the simplicity of Cartesian grids. The multiscale LBGK code is clearly more complicate
than standard LBGK scheme, but still simpler than state-of-the-art computational fluid «
namic codes with unstructured and locally refined mesh capabilities. Although a detal
head-on comparison on specific benchmark calculations remains to be done, prelimil
data indicate comparable performances on serial computers. The great amenability to
allel computing of LBGK schemes, which is to a large extent preserved in the multisc:
version, is expected to provide an asset for future LBGK applications to turbulent flows
complex geometries.
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